An Empirical Roofline Methodology for
Quantitatively Assessing Performance Portability

Charlene Yang*, Rahulkumar Gayatri*, Thorsten Kurth*, Protonu Basuf, Zahra Ronaghi*,
Adedoyin Adetokunbo?, Brian Friesen*, Brandon Cook*, Douglas Doerfler*,
Leonid Oliker!, Jack Deslippe*, Samuel Williams'

*National Energy Research Scientific Computing Center
Lawrence Berkeley National Laboratory
{cjyang, rgayatri, tkurth, zronaghi, bfriesen, bgcook, dwdoerf, jrdeslippe} @1bl.gov

TComputational Research Division

Lawrence Berkeley National Laboratory

{pbasu, loliker, swwilliams } @1bl.gov
{Los Alamos National Laboratory
aadedoyin@lanl.gov

Abstract—System and node architectures continue to diver-
sify to better balance on-node computation, memory capacity,
memory bandwidth, interconnect bandwidth, power, and cost for
specific computational workloads. For many application develop-
ers, achieving performance portability (effectively exploiting the
capabilities of multiple architectures) is a desired goal. Unfor-
tunately, dramatically different per-node performance coupled
with differences in machine balance can lead to developers being
unable to determine whether they have attained performance
portability or simply written portable code. The Roofline model
provides a means of quantitatively assessing how well a given
application makes use of a target platform’s computational
capabilities. In this paper, we extend the Roofline model so that
it 1) empirically captures a more realistic set of performance
bounds for CPUs and GPUs, 2) factors in the true cost of different
floating-point instructions when counting FLOPs, 3) incorporates
the effects of different memory access patterns, and 4) with
appropriate pairing of code performance and Roofline ceiling,
facilitates the performance portability analysis.

Index Terms—performance portability, performance model,
Roofline, KNL, GPU, performance counters

I. INTRODUCTION

Application portability is becoming more and more de-
sirable by many software developers and users as computer
architectures diversify [1]-[4]. Depending on the purpose of a
given application and target audience, “portability” can mean
different things to developers and/or users. For example, it
can simply mean that an application can be correctly executed
across a variety of hardware architectures or operating sys-
tems. Users may also expect a certain level of performance
consistently reached on different architectures, especially in
the world of high performance computing (HPC).

Unfortunately, there is little consensus on how to exactly
define or quantify “performance portability”. However, we
believe that a reasonable definition should be based on a
quantitative measure of how effectively an application uses
different aspects on each target architecture. Two definitions

of this efficiency are common. First, one could examine the
ratio of the code’s performance on that architecture to that of
its best implementation on all architectures in question — as
defined in [5], “application efficiency” . Alternatively, one can
examine the ratio of the code’s actual performance to that
architecture’s peak performance — ‘“architectural efficiency”
[5]. In the latter approach, it is imperative that any formula
for quantifying performance portability should incorporate
performance-relevant hardware features and limitations such
as peak FLOP rate, memory bandwidth for the different
memory levels, instruction issue rates, efc.

Although there is little consensus on the definition of
performance portability, all definitions and metrics have helped
provide a meaningful comparison between performance on
different architectures and thus make useful suggestions to
future code optimization.

The Roofline performance model is very effective in charac-
terizing codes on a variety of architectures, identifying code
bottlenecks, and guiding optimization efforts [6], [7], and it
has been widely adopted in HPC performance analysis and
workflows [8], [9]. In [5], [10], [11], it has been incorporated
in the metric for assessing performance portability across
different platforms as well. Compared to the two example
definitions of application’s efficiency mentioned above, the
Roofline model can account for different architecture-specific
performance bounds that limit an architecture’s sustained per-
formance. Moreover, as Roofline adapts to changes in problem
size and different implementations of the code, it provides
a more accurate assessment of the application’s architectural
efficiency than simply percentage of the peak FLOP/s.

There are a few nuances to defining performance portability
relative to a performance model like Roofline. First, accurate
ceilings must be established through the use of benchmarks
rather than a vendor’s own specification numbers which can be
both theoretical and over-optimistic. Second, a relevant ceiling

needs to be selected in order for meaningful comparisons to be
made. This requires some knowledge of the code’s instruction
mix and dominant memory level. Finally, one can no longer
rely solely on canonical FLOPs (those counted by hand) as
the presence of not only FMAs, but also divides, exponentials,
and logarithms can skew these counts. For example, a floating-
point divide should be counted as multiple FLOPs as they are
usually implemented by multiple instructions on most modern
CPU and GPU architectures.

This paper makes several contributions. First, it quantifies
the realistic Roofline ceilings for the Intel Knights Landing
CPU (KNL) [12] and the NVIDIA V100 Volta GPU [13].
Second, we develop and deploy a methodology for both the
KNL and V100 that accurately accounts for the true cost
of different instruction mixes - demonstrated with floating-
point divides - in the context of the Roofline model. Third,
we settle the long-term question of how Roofline accounts
for different memory access patterns - demonstrated through
moderate stride memory access. Failure to embrace these
concepts both over-inflates an architecture’s computational
ceilings, underestimates an application’s arithmetic intensity
and computational performance, and results in a large (and
erroneous) discrepancy between observation and performance
bound. Finally, we show that only with proper application
instrumentation and system benchmarking can Roofline be
used as the basis for quantitatively assessing performance
portability across CPU and GPU architectures.

II. METHODOLOGY

In this section, we lay out the methodology to empirically
collect Roofline ceilings and Roofline performance data for a
given architecture and for a given application, in the context
of performance portability. We will introduce the performance
portability metric we will use in this paper, the architectures
we will study, and the kernel we will use to validate our
analysis. Tools will also be introduced to detail the process
of collecting empirical architecture characterization data and
empirical application performance data.

A. Performance Portability Metric

We adopt the performance portability metric from [5],
[10], and specifically, the performance portability 9P of an
application a solving problem p on a given set of platforms
H is,

H
|—|1 if ¢ is supported,
q?(a/ap7 H) = EiEH ei(a p) Vi € H (1)
0 otherwise

where e;(a,p) is the application a’s architectural efficiency on
architecture 4, and is obtained using the Roofline performance
model [6]:

P, [(a7 p)
min(F;, B; x I;(a,p))
where P;(a,p) is the observed code performance in floating-
point operations per second (FLOP/s), F; is the peak FLOP/s

ei(a,p) = 2

performance of architecture ¢, B; is the peak bandwidth of
architecture ¢, and I;(a,p) is the arithmetic intensity (AI) of
application @ on architecture 7. The denominator min(F;, B; X
I;(a,p)) accounts for when the application is compute bound
(i.e. by F;) as well as when it’s bandwidth bound (i.e. by
B; x I;(a,p)), adding extra accuracy to the calculation of
application’s architectural efficiency e;(a, p).

Much of this paper is focused on improving the accuracy
of the components of e;(a, p) — namely P;(a,p), F;, B;, and
I;(a,p). To that end, we deploy empirical benchmarking for
F; and B;, and also account for the true cost of different in-
struction mixes and memory access patterns to more accurately
measure P;(a,p) and I;(a,p).

B. Two Architectures

We investigate two contemporary HPC architectures in this
paper — the Intel Knights Landing (KNL) CPU [12] and the
NVIDIA V100 Volta GPU [13]. To this end, we utilize the
Cori supercomputer at the National Energy Research Scientific
Computing Center (NERSC) and the Summit supercomputer
at the Oak Ridge Leadership Computing Facility (OLCF).

Cori is a CPU-based Cray XC30 system comprised of 2388
Haswell nodes and 9688 KNL nodes. Each KNL node is a
single-socket Xeon Phi 7250 processor, with 68 cores, two
512-bit Vector Processing Units (VPUs) per core and four
hardware threads per core. Each pair of cores (called a “tile”)
shares a IMB L2 cache and each node has 96GB of DDR4
memory and 16GB of on-package high bandwidth memory
(HBM). At a nominal frequency of 1.4GHz, each node is
advertised to deliver 3 TFLOP/s of peak performance and
490 GB/s of HBM bandwidth [14].

Summit is a GPU-accelerated supercomputer with a total of
4608 nodes, each consisting of 6 NVIDIA V100 GPUs and 2
IBM Power9 CPUs. Each V100 has 80 Streaming Multiproces-
sors (SMs), and each SM has 64 FP32 cores, 64 INT32 cores,
32 FP64 cores, 8 Tensor Cores, and four texture units. Similar
to the KNL CPU processor, the V100 has 16GB of HBM2,
and it delivers a theoretical peak performance of 7.8 TFLOP/s
and 900 GB/s of bandwidth from the HBM [13].

It is apparent that these two architectures have similar
features as they are targeted at the same segment of customers
(HPC). However, using the Roofline performance model, we
can still show that the subtleties of their differences can be
exposed, later in Section III.

C. Machine Characterization

Vendor performance numbers, 3 TFLOP/s for KNL and
7.8 TFLOP/s for V100 as above mentioned, are theoretical
bounds on machine performance and may not necessarily
reflect the realities of code generation, data locality, in-
struction issue bandwidth, memory controller efficiency, or
power-constrained environments. As such, they can become
disconnected from the performance achievable by any real-
life code running on that architecture. The Empirical Roofline
Tool (ERT) [15] can measure the “sustained” computational

performance, cache bandwidths and memory bandwidth, giv-
ing a more realistic set of ceilings when using Roofline for
performance analysis.

ERT runs a variety of “micro-kernels” sweeping through
a range of parameters, such as the number of processes and
threads on the CPU, the number of threadblocks and threads on
GPU, the problem size, and the number of trials. In this paper,
we deploy four “micro-kernels”. Namely, they are the “FMA”,
“no FMA”, “divide with FMA”, and “divide without FMA”
kernels. All of them are double-precision based, and vector-
ization opportunities and instruction level parallelism (ILP) are
also exploited as much as possible. The divide-related kernels
here are specifically designed to study the impact of complex
operations (such as divides) on the attainable performance of
a given architecture (see Section III-B).

We also use ERT to obtain the memory ceilings for the
Roofline model. In particular, we are focused on the HBM
level of the memory hierarchy, as it is common for large-
scale applications to decompose their dataset to fit into HBM
on a node level in order to take full advantage of the HBM’s
high bandwidth. The GPP kernel chosen for this paper (and its
problem size) fits into this description as well (Section II-D),
i.e. it performs a single node’s worth of work and the dataset
fits into HBM, but will exceed L2, on both KNL and V100
architectures.

A caveat about using ERT is that even though it provides
more realistic bounds on the attainable performance, by no
means should one conclude that every application or even ev-
ery HPC application can attain the same level of performance.
The kernels in ERT are often carefully crafted and tuned to
match the target architecture’s characteristics to fully exploit
its potential, whereas in real-world large-scale applications,
this is impossible.

D. The General Plasmon Pole (GPP) Kernel

In order to evaluate Roofline in the context of performance
portability and ensure a sufficiently robust methodology, we
use a highly parameterized version of the General Plasmon
Pole (GPP) kernel [16] from a material science code called
BerkeleyGW [17]. The GPP kernel calculates electron self-
energy using the common General Plasmon Pole approxi-
mation [18], and it’s written in C++ and parallelized with
OpenMP. The computation in this kernel represents work that
typically an individual MPI task would perform in a much
larger calculation, spanning hundreds or thousands of nodes.
The computation is tensor-contraction like, where a few pre-
calculated complex double-precision arrays are multiplied and
summed over a certain dimension and collapsed into a small
matrix. The problem size chosen for this paper is 512 electrons
and 32768 plane wave basis elements, and is a medium
problem size in the real world of material science.

The pseudo code of GPP implemented on KNL can be
described as...

#pragma omp parallel
do band = 1, nbands

do igp = 1, ngpown
do ig = 1, ncouls #vectorization
do iw = 1, nw #typically nw=3;
load wtilde_array(ig, igp)
load agsntemp (ig, band)
load eps(ig, igp)
compute wdiff, delw,
update achtemp (iw)

unrolled

sch_array

and on the V100 as...

#threadblock grid: (nbands,ngpown)
do band = 1, nbands

do igp = 1, ngpown

do ig = 1, ncouls #threads

do iw = 1, nw #typically nw=3; unrolled
load wtilde_array(ig, igp)

load agsntemp (ig, band)

load eps(ig,igp)
compute wdiff, delw,

update achtemp (iw)

sch_array

The reason we chose GPP is that not only does GPP offer
abundant levels of parallelism (thread and vector), but it also
includes several parameters that we may vary in order to
arbitrarily increase arithmetic intensity (increase nw in the
iw loop or change data type from complex to real - both of
which relate to different realistic problem configurations in
the full application), enable strided memory access patterns
(modification of the ig loop - related to different indexing in
the full code), and quantify the impact of floating-point divides
in the context of the Roofline model (replace the divide in the
compute delw statement with a multiply). As such, this
single, well-understood kernel can act as a stand-in for a range
of potential application kernels.

E. Application Characterization

Although one could count the number of FLOPs in a
source code manually, this process is tedious, error-prone,
and not scalable to large applications. Compilers convert
high-level languages to low-level instructions and different
FLOPs can be mapped to different numbers of instructions.
Historically, multiplies and adds were generally one instruction
per operation (or FLOP), but complex operations such as
divides, exponentials, logarithms, and trigonometrics, require
more than one instruction per operation, and the ratio of
instructions to FLOPs can vary depending on the input data.
Thus, counting FLOPs by simply inspecting the source code
can be very erroneous.

When it comes to data movement (volume of data moved
between two memory/cache levels), it is common to estimate
the total amount of read and written data by all the array sizes.
But this, again, can be very inaccurate as there are possibly
cache misses, cache reuse, or pre-fetching happening in the
memory system, skewing the total count of read/written bytes.

Without accurate counting of FLOPs or data movement,
many aspects of the Roofline analysis break down, thus we

found it imperative to leverage tools to measure both the
data movement and the FLOPs [19]. To that end, we use
Intel’s Software Development Emulator (SDE) [20], [21],
LIKWID [22], [23], and NVIDIA’ nvprof [24] to collect
performance data for GPP. For data movement, we examine
only HBM to L2 data movement.

Together with runtime, we calculate the sustained perfor-
mance (GFLOP/s) for the GPP kernel by,

SDE or nvprof FLOPs

Perf = 3
erformance Runtime ; 3)
and the arithmetic intensity (FLOPs/Byte) by,

Al SDE or nvprof FLOPs @

~ LIKWID or nvprof data movement’

More details can be found in [25].

LIKWID’s 1likwid-perfctr utility allows users to ac-
cess hardware performance counters on supported architec-
tures, and it has a few pre-defined performance groups,
for users to collect information such as L1 cache miss
rate, branching miss rate, and pOPs stalls. In particular,
its “HBM_CACHE” performance group captures the number
of read and write transactions on a certain memory/cache
level, and it is used in this paper to collect the data move-
ment between L2 and HBM. 1ikwid-perfctr also has a
“FLOPS_DP” performance group, but due to the limitations
of KNL hardware counters, LIKWID, as well as other tools
that read the same counters such as Intel VTune [26], do not
give sufficient accuracy in their estimate of FLOPs. As such,
we examined alternate techniques that can capture the FLOP
characteristics accurately.

Intel SDE’s instruction mix histogram tool can capture
dynamic instructions executed, instruction length, instruc-
tion category, and ISA (instruction set architecture) exten-
sion grouping on Intel architectures. The counting methodol-
ogy [21] developed by Intel is vector length-aware, precision-
aware, FMA-aware, and divide-aware (we chose to not exploit
the mask-aware capability of its methodology). We use this
methodology as well as the post-processing scripts developed
by NERSC [27] to collect the FLOPs for GPP in this paper.

On V100, the profiling tool, nvprof, is used to collect
both FLOPs and the data movement. Particularly, we will use
the flop_count_dp, dram_read_transactions and
dram_write_transactions metrics from nvprof. The
flop_count_dp gives us the direct FLOP count, and we
obtain the ttoal data movement by scaling the total number of
(read and write) device transactions by 32 (the size of each
transaction is 32 bytes).

III. RESULTS

In this section, we will first show some benchmarking re-
sults, demonstrating the importance of empirically measuring
the Roofline bounds as well as collecting application per-
formance data. Then with two examples, different arithmetic
intensities and different memory access patterns, we will show
how Roofline can be used in the context of performance

portability to analyze the impact of architectural differences
on codes’ performance.

A. Establishing Accurate Roofline Ceilings

On KNL, with full-FMA codes (16 double-precision FLOPs
per vector FMA instruction), 64 cores (common practice), 2
VPUs, and a 1.2GHz clock frequency, one may calculate the
theoretical compute ceiling as:

64 x 8 x2x2x1.2=246 TFLOP/s (5)

Note that on KNL, the peak performance is different than
the marketing number 3 TFLOP/s mentioned in Section II-B
because the clock frequency for full-AVX codes is reduced
from the nominal 1.4GHz by 200MHz [14], and it is rare for
applications to use 68 cores instead of 64.

Similarly, for full-FMA codes with 80 SMs, 32 FP64 cores
per SM, 2 FLOPs per FMA instruction, and a 1.53GHz boost
clock frequency, the V100 compute ceiling is:

80 x 32 x 2 x 1.53 = 7.83 TFLOP/s 6)

On both KNL and V100, the no-FMA theoretical ceilings
are calculated as one-half of the corresponding FMA ceilings.

As stated in Section II-C, vendor specification numbers
may not be realistic performance bounds for an architecture.
Rather, the ERT tool should be used to help establish a
more accurate and realistically achievable set of Roofline
ceilings (performance bounds). To that end, Figures 1 and 2
show the discrepancy between the theoretical numbers and
the empirically measured compute and bandwidth bounds for
KNL and V100. The sustainable HBM bandwidth, measured
by ERT, is 341.8 GB/s on KNL and 828.8 GB/s on V100,
which is about 30% and 8% lower than their respective vendor
specifications (490 GB/s [12] and 900 GB/s [13]). Similarly,
The empirical FMA ceiling is 2.7% lower than its theoretical
counterpart on KNL (2.39 vs. 2.46 GFLOP/s), and is 9.8%
lower on the V100 (7.07 vs. 7.83 TFLOP/s). When FMA is
disabled in the compiler, there is a 21.9% gap between the
empirical and theoretical no-FMA ceilings on KNL (0.96 vs.
1.23 TFLOP/S), but only a 9.7% gap on the V100 (3.54 vs.
3.92 TFLOPIs).

While the FMA:no-FMA empirical ceilings on V100 show
the expected 2:1 ratio, no-FMA performance is well under
50% of FMA peak on KNL. To investigate this discrepancy,
we experimented with hand-crafted intrinsics [28] kernels in
ERT (nominally, ERT uses kernels written in C). With careful
design of instruction pipeline and rigorous tuning of intrinsic
calls, we are able to reach a 1.2 TFLOP/s no-FMA ceiling on
KNL. However, as it is unproductive and unrealistic to rewrite
large, real-world applications in intrinsics, all experiments in
this paper will be based on compiled C code on both platforms.
To that end, when analyzing performance in this paper, we
will use ERT’s empirical ceilings based on compiled C code
on both KNL and V100 and incur the lower 959.5 GFLOP/s
no-FMA ceiling on KNL.

Theoretical FMA: 2457.6 GFLOP/s
Empirical FMA: 2390.1 GFLOP/s
Theoretical No-FMA: 1228.8 GFLOP/s

Empirical No-FMA: 959.5 GFLOP/s

Performance [GFLOP/sec]

-------- Theoretical Ceiling
—— Empirical Ceiling

1071 10° 10! 102 103 104 10°
Arithmetic Intensity [FLOPs/Byte]

Figure 1. Performance ceilings on KNL: theoretical vs empirical. Theoretical
ceilings are obtained either by Equation (5) or vendor specification data.
Empirical ceilings (realistic performance bounds) are obtained through ERT.
Observe the substantial difference in bandwidth and performance without
FMAs.

10 Theoretical FMA; 7833.6 GFLOP/s

Empirical FMA: 7068.9 GFLOP/s

Performance [GFLOP/sec]

-------- Theoretical Ceiling
—— Empirical Ceiling

1021

10° 10t 10? 103 104 10°
Arithmetic Intensity [FLOPs/Byte]

Figure 2. Performance ceilings on V100: theoretical vs empirical. Theoretical
ceilings are obtained either by Equation (6) or vendor specification data.
Empirical ceilings are obtained through ERT. Observe sustained bandwidth is
very close to advertised, while there’s more than a 10% difference in compute.

B. Accurately Modeling Divides in Roofline

Accurately counting the total number of FLOPs executed by
a kernel is extremely important as it directly affects the calcu-
lation of both the arithmetic intensity and the GFLOP/s on the
Roofline. If more FLOPs are executed than the source code
enumerates, then arithmetic intensity and the true GFLOP/s are
both higher than one would have nominally calculated. This
increase in arithmetic intensity and performance can result in
the kernel being pushed beyond the machine balance to the
point where it is unencumbered by memory bandwidth, and
the kernel could be much closer to a nominal compute ceiling
than one realizes. For example, consider floating-point divides.
Some ISA’s implement divide with a single non-pipelined
instruction while others rely on the compiler to generate a
sequence of FMA’s following a reciprocal estimate. In either
case, simply counting the number of divides in the source code
and equating them with multiples or adds is completely inap-

propriate as the former ignores pipeline stalls while the latter
ignores additional instructions. We posit a similar conclusion
of exponentials, logarithms, and trigonometric functions.

On both KNL and V100, with a sufficient optimization
level, the compiler will emit a reciprocal estimate followed
by multiple (perhaps iterative) floating-point operations in
order to realize a floating-point divide. In order to quantify
the impact of these, we will use several variants of the
GPP kernel. The first is the stock GPP code in which the
compiler emits multiple floating-point instructions per divide,
and we empirically count the number of divides with SDE
or nvprof (“Empirical GFLOPs” in Table I). In the second,
although not numerically correct, we replace all source code
floating-point divides with floating-point multiplies. Doing so
ensures SDE counts all nominal “divides” as one floating-
point instruction and provides the baseline as to what one
would observe if simply equating “canonical” divides with
multiplies (“Canonical GFLOPs” in Table I). Orthogonal to
these variants, we vary the nw bound of the {w loop. Doing
so allows us to increase the fraction of time in the inner loop
and inhibit some compiler optimizations.

Although counting all FLOPs generated by the compiler
for each divide is a step in the right direction, it may not be
sufficient. On KNL, the compiler generates several mantissa-
and exponent-related extract and insert instructions as well
as comparisons that SDE does not count as FLOPs despite
the fact they are executed in the vector units and displace
other floating-point instructions. In the future, we will examine
the impact of these floating-point instructions on sustained
performance. However, in this paper, we will only examine
the core “multiple”, “add”, “subtract”, and “divide” floating-
point instructions.

Table I shows both the canonical GFLOPs, where each
divide is counted as 1 FLOP (second variant of GPP), as well
as the empirical GFLOPs, where each divide is counted as
however many FLOPs are actually executed by the architecture
(first variant of GPP). For nw = 1, the difference between
canonical GFLOPs and empirical GFLOPs is 14% on KNL
and 28% on V100. However, as nw increases (and the code
is increasingly dominated by the kernel), so too does the
difference, reaching 35% on the V100. The implication is
clear. Naively estimated FLOP counts derived from simply
counting the source code FLOPs can be off by 35%. Moreover,
what may have seemed like only 65% of peak performance is
in reality 88% of peak performance.

Table 1
TotAL GFLOP cOUNT FOR GPP ON KNL AND V100 AS A FUNCTION OF
ARITHMETIC INTENSITY CONTROLLED BY nw. OBSERVE THAT PROPER
ACCOUNTING FOR ALL FLOPS ASSOCIATED WITH DIVIDES (EMPIRICAL)
IS IMPERATIVE.

Count KNL V100
(GFLOPs) nw=1 nw=3 nw=6 nw=1 nw=3 nw=6
Canonical 921.4 2354.7 | 4504.6 895.8 2329.1 | 4350.9
Empirical 1055.8 | 2834.5 | 5502.7 | 1151.6 | 3096.8 | 5886.5

Figures 3 and 4 visualize the impact of the FLOP un-

derestimates from Table I on GPP performance. In addition,
they highlight the imperative of selecting the appropriate
ceiling for performance analysis. The Bar labeled “1” high-
lights the large performance difference between FMA-enabled
GPP performance and the bandwidth ceiling it’s bound by.
However, as SDE shows that only a small portion of the
instructions are FMA’s, comparisons against the FMA ceiling
would be inappropriate. For the same reason, one should
compare against neither the “Div FMA” nor the “Div No-
FMA” ceilings (Bar 4 for “Div No-FMA” ceiling) as only
a few of the floating-point instructions in GPP are divides.
Rather, one should compare against the no-FMA ceiling.

With our focus on the no-FMA performance, Bar 2 (canon-
ical performance vs. theoretical ceiling) could be considered,
but given the discussion in Section II-C, the empirical no-
FMA ceiling should be used instead. When one properly
accounts for the divide-related FLOPs shown in Table I,
GPP performance (red open triangle) moves diagonally to
an increased arithmetic intensity with increased performance
(blue open triangle). Although Bar 3 presents a more realistic
estimate of the gap between GPP performance and its ceiling,
The true performance of GPP is now captured by Bar 5
(empirical FLOPs and empirical ceilings) with a much smaller
gap between the empirical performance and empirical ceiling.

In order to highlight the importance of comparing the
correct performance metric against the correct ceiling, Table II
presents application’s architectural efficiency as calculated
using Equation (1) for each of the different combinations in
Figures 3 and 4. Clearly, Bars 1, 2, and 3 show very low
performance portability (unnecessarily), while Bar 4 presents
an impossible portability. Only Bar 5 (empirical FLOPs that
account for those hidden FLOPs within a divide, coupled
with empirical ceilings) delivers the appropriate architectural
efficiency and ensures that any discussion of performance
portability is not erroneously skewed.

FMA: 2390.1 GFLOP/s

9 AI@QE?K[Q@!.NQ:EMAE.!.ZZ.?-.??.G.E'.—.QP../.S..
103 Q)\c, - No-FMA: 959.5 GFLOP/s
o
3 o YV
o (8%)
—) Div FMA: 429.0 GFLOP/s
g | a
S RS
IS Div No-FMA: 221.2 GFLOP/s
& 102 VvV FMA I Canonical Performance

V' NoFMA mEE Empirical Performance

10° 10! 102

Arithmetic Intensity [FLOPs/Byte]

Figure 3. GPP performance for nw = 6 on KNL as a function of FMA code
generation and how FLOPs are counted. Bars represent different pairings of
performance and ceiling. Observe, only one pairing (5) is meaningful.

10
FMA: 7068.9 GFLOP/s
—_ q,\°’
9 O 4 ¥ Theoretical No-FMA: 3916.8 GFLOP/s
= %,3; AN No-FMA: 3535.8 GFLOP/s
S &
e)
o 1% @)
© 103 Div FMA: 907.8 GFLOP/s
1)
C
g Div No-FMA: 496.6 GFLOP/s
9]
o V FMA I Canonical Performance
YV NoFMA mEE Empirical Performance
1 2
0100 10t 102 103

Arithmetic Intensity [FLOPs/Byte]

Figure 4. GPP performance for nw = 6 on V100 as a function of FMA code
generation and how FLOPs are counted. Bars represent different pairings of
performance and ceiling. Observe, only one pairing (5) is meaningful.

Table II
ARCHITECTURAL EFFICIENCY AND PERFORMANCE PORTABILITY OF GPP
BASED ON DIFFERENT PERFORMANCE-TO-CEILING PAIRINGS (BARS 1-5)

Appli?ation Bar 1 Bar 2 Bar 3 Bar 4 Bar 5
Efficiency
KNL [4041% 32.04% 66.65% 289.13% S1.42%
VI00 | 64.89% 81.40% 89.79% 639.36% 99.96%
Performance | 4o o1, 63 499 76.51% 398.19% 89.74%
Portability
where...

‘ GPP Performance Roofline Ceiling

Bar I: Canonical FMA Empirical FMA

Bar 2:| Canonical no-FMA Theoretical no-FMA
Bar 3: Canonical no-FMA Empirical no-FMA
Bar 4: Canonical no-FMA Empirical divide no-FMA
Bar 5: Empirical no-FMA Empirical no-FMA

C. Capturing Changes in Performance Bottleneck

Assured we can accurately account for the performance
impact of floating-point divides in the context of the Roofline
model and performance portability, we will now demonstrate
that our methodology works across a range of arithmetic
intensities. To that end, we simply increase the trip count of
the 7w loop in GPP by varying nw from 1 to 6. In theory,
arithmetic intensity should increase (almost) linearly with the
increasing nw.

In order to maximize the number of floating-point instruc-
tions in the dynamic mix and simplify analysis, we first disable
the generation of FMA on KNL and the V100. Whereas on the
V100, Figure 6 shows a strong transition (open symbols) as
one linearly increases arithmetic intensity (note the log scale)
from memory-bound performance to performance being bound
by the no-FMA ceiling, Figure 5 shows that on KNL hitting the
no-FMA ceiling is difficult, even with high arithmetic intensity
and properly accounting for the floating-point operations.
If one were to exploit FMA (solid symbols), then neither
architecture sees the theoretical 2x speedup.

We believe much of these disparities in performance is
attributable to the balance between instruction issue bandwidth

and floating-point throughput. For example, whereas KNL has
two vector units, its front end can only fetch, decode, and issue
at most two instructions (of any type) per cycle. So there is
no spare instruction issue bandwidth for integer operations,
compares, jumps (by definition, every loop has a jump),
shuffles, and other non-floating point instructions. Every non-
floating point instruction displaces a FMA, add, or multiply,
thus making attaining the no-FMA ceiling impossible.

By contrast, each warp scheduler on the V100 (there are
four per SM) can dispatch 32 threads per cycle to (four
groups of) eight FP64 cores, eight load/store cores, 16 INT
cores, and 16 FP32 cores. In other words, there is far more
instruction issue bandwidth than FP64 throughput, with the
surplus usable for loads, stores, or integer operations. As a
result, it is much easier for Volta to deliver performance close
to the no-FMA ceiling. The observed performance plateau
when FMA is enabled suggests the generated code is not 100%
FMAs, but rather is a mix of FMA, multiplies, and adds. This
was confirmed with SDE code inspection. Our future work will
examine methodologies and Roofline visualization techniques
to highlight the effect of finite instruction issue bandwidth on
performance on both CPUs and GPUs.

A more nuanced, yet critical facet of performance porta-
bility can be inferred from the AI, at which a transition
from bandwidth-limited performance to compute-limited per-
formance occurs. As one increases arithmetic intensity by in-
creasing nw, we observe that the V100 transitions at nw = 2.
Conversely, at this arithmetic intensity, KNL is still bandwidth
limited. This difference highlights the imperative of using
Roofline to understand performance portability, as one cannot
simply compare fraction of compute peak on both architectures
any more than one can compare fraction of memory bandwidth
on both architectures. Rather, one must compare the V100
to the no-FMA ceiling and KNL to the HBM ceiling, and
in general one must be cognizant of the ultimate (Roofline)
bound on an architecture-by-architecture and kernel-by-kernel
basis.

FMA: 2390.1 GFLOP/s

o
[J]
n
3
Z 103 . No-FMA: 959.5 GFLOP/s
5 10 6%\6 % g r
= ® S
] 5 M
g S
£\
S e
= ® nw=1 nw=4
[J)
o FMA H nw=2 o nw=5

[No-FMA ¥V nw=3 > nw=6

10° 10!
Arithmetic Intensity [FLOPs/Byte]
Figure 5. GPP performance on KNL as a function of nw. Observe the

transition from bandwidth bound to a plateau below the no-FMA ceiling.

Table IIT presents architectural efficiency and performance

104
_ FMA: 7068.9 GFLOP/s
Q
u
a.
9 v Ae>
5 . No-FMA: 3535.8 GFLOP/s
—_ T
]
C
©
£
‘% ® nw=1 nw=4
a mm FMA B nw=2 ® nw=5
[No-FMA V¥ nw=3 p nw=6
103 2
10! 10

Arithmetic Intensity [FLOPs/Byte]

Figure 6. GPP performance on V100 as a function of nw. Observe the
transition from bandwidth bound to either the no-FMA ceiling, or a plateau
between the no-FMA and FMA ceilings.

portability (Equation 1) of the six variants of GPP (increased
nw provides increased Al) with or without the use of FMA. In
all cases, we use accurate measures of FLOPs and empirical
ceilings. Across all values of nw, without FMA, performance
is either bound by memory bandwidth or the no-FMA ceiling
on both KNL and V100 (strongly). As a result, architectural
efficiency is generally high on both machines and performance
portability is consistently greater than 80%. Conversely, when
FMA is enabled, the benefit at high nw is far less than 2x
on either platform. As a result, architectural efficiency suffers
moderately on V100 and strongly on KNL. This divergence in
architectural efficiency leads to a reduction in the performance
portability metric to just under 50% at nw = 6, and from an
application standpoint, portability has been lost. However, if
one were to incorporate non-floating-point vector operations
into the Roofline-based architectural efficiency metric, some
efficiency might be regained.

Table III
ARCHITECTURAL EFFICIENCY AND PERFORMANCE PORTABILITY OF GPP
VARIANTS OF nw (DIFFERENT AI) AND EXPLOITATION OF FMA.

FMA GPP performance against the FMA ceiling
Application
Efficiency
KNL
V100
Performance
Portability

nw=6

39.65%
66.38%

49.65%

nw=5

46.56%
65.07%

54.28%

nw=4

55.28%
65.44%

59.93%

nw=3

66.77%
76.70%

71.39%

nw=2

77.50%
91.50%

83.92%

nw=1

84.98%
97.36%

90.76%

No-FMA GPP performance against the no-FMA ceiling
Application
Efficiency
KNL
V100
Performance
Portability

nw=6

82.81%
99.73%

90.49%

nw=>5

81.28%
1.00

89.93%

nw=4

78.72%
98.91%

87.67%

nw=3

73.74%
97.43%

83.95%

nw=1l nw=2

82.06% 72.95%
92.88% 92.88%

87.14% 81.72%

D. Accounting for Strided Memory Access

As originally envisioned, Roofline was focused on streaming
(in particular unit-stride) memory access patterns. As such, it

nominally uses STREAM or some variant like ERT to calcu-
late attainable bandwidth. Nevertheless, time and again, users
have asked if, when, and how Roofline will support strided
memory access patterns. In this section, we will demonstrate
that Roofline already effectively accounts for small (up to two
memory transactions) stride memory access.

We modified GPP’s 7g loop to implement a strided memory
access pattern with a stride known at compile time, and an
additional loop was inserted to ensure the computation was
mathematically equivalent. To further expand the range of
computations, we once again vary nw from 1 to 6 in order
to vary arithmetic intensity. As usual, we simply record data
movement to and from HBM using LIKWID and nvprof.

As we increase the stride, Figure 7 and Figure 8 show that
on both KNL and V100, arithmetic intensity decreases. Across
a range of strides and values of nw (range of arithmetic inten-
sities), GPP performance on both KNL and V100 gracefully
transitions from compute bound to HBM bandwidth bound.

On KNL, the cache line size is 64B. As such, stride-2
and stride-4 imply accessing two elements or one element
per cache line, but accessing every consecutive cache line.
This results in a straightforward 2x and 4x loss in spatial
locality for stride-2 and stride-4 respectively. The loss in
spatial locality directly translates into the observed loss in
arithmetic intensity. However, as one proceeds to stride-8
(128B) and stride-16 (256B), one accesses every other and
every fourth cache line on KNL. Ideally, one would hope
the intervening cache lines are not loaded. Nevertheless, we
observe a continued decrease in arithmetic intensity (increased
data movement) for increasing stride that we attributed to
hardware prefetchers loading neighboring cache lines.

Behavior on V100 is more complex. The compiler can
generate different loads that can result in data being cached
either in both the L1 and L2, or solely in the L2. Moreover,
depending on how the data is cached, the memory fetch
generated on a miss can be either 32B or 128B [29]. Figure 8
shows this effect as we vary stride and nw.

Regardless of nw, caching behavior, or memory fetch size,
stride-2 (32B) results a 2x loss in spatial locality with an
expected and observed 2x decrease in arithmetic intensity.
Although we see the 2x loss in arithmetic intensity as we
proceed to stride-4 (64B) across all values of nw, we observe
that stride-8 (128B) behaves very differently for larger values
of nw. For the higher values of nw, stride-8 delivers roughly
the same arithmetic intensity as stride-4 indicating only 64B is
moved from memory. Conversely, for nw = 1, we observe a
continued decrease in arithmetic intensity, although not quite
the 2 that would imply 128B transfers. As nw and stride are
known at compile time, it is possible the compiler generated
different code for each variant that resulted in different L2
cache behavior.

In the future, we will examine larger strides (e.g. stride by
4KB) in order to quantify how hardware stream prefetchers
and GPU compilers/caches behave differently in the context
of Roofline. Specifically, with sufficiently large strides (e.g. 1
TLB miss per access), one could define multiple bandwidth

ceilings.

FMA: 2390.1 GFLOP/s

v

3103 @ No-FMA: 950.5 GFLOP/s

o

o

|

w

e

[0}

o

5 ® Original

§102 B Stride 2

O

‘“t) Hl nw=1 V Stride 4

o Il nw=3 A Stride 8
Bl nw=6 ¢ Stride16

107! 10° 10t 102

Arithmetic Intensity [FLOPs/Byte]

Figure 7. GPP performance on KNL as a function of stride and nw when
FMA is enabled. Observe strided memory access simply changes arithmetic
intensity (data movement) without changing bandwidth.

104
FMA: 7068.9 GFLOP/s
B gy, ® No-FMA: 3535.8 GFLOP/s
% B
|
[T
)
- 103
1)
C
©
% ® Original
E N nw=1 [Stride2
o B nw=3 V Stride4
Il nw=6 A Stride 8
102 .
100 10! 10

Arithmetic Intensity [FLOPs/Byte]

Figure 8. GPP performance on V100 as a function of stride and nw when
FMA is enabled. Observe that just as on KNL, strided memory access simply
changes arithmetic intensity (data movement) without changing bandwidth.

Table IV shows the architectural efficiency and performance
portability for the GPP stride variants for a fixed nw = 6
(higher arithmetic intensity). Beginning with the original base-
line (stride-1), we see that both KNL and V100 attain relatively
low architectural efficiency and performance portability for
this high arithmetic intensity kernel. As previously noted,
this is more an artifact of computation than architecture (not
all FLOPs in GPP are amenable to FMA). Conversely, as
one increases stride (thereby increasing data movement and
decreasing Al), we see a steady improvement in architectural
efficiency on both KNL and V100, to the point where both
machines exceed 98%. In such a regime, we attain high
performance portability (both machines are similarly bound
by the bandwidth Roofline).

IV. CONCLUSION AND FUTURE WORK

In this paper, we discuss a number of important practical
considerations in applying the Roofline methodology to quan-

Table IV
ARCHITECTURAL EFFICIENCY AND PERFORMANCE PORTABILITY OF GPP
VARIANTS OF STRIDE SIZES, WITH FMA ENABLED, FOR nw = 6.

Application
Efficiency
KNL
V100
Performance
Portability

Stride 2

75.24%
85.43%

80.01%

Stride 4

98.39%
98.81%

98.60%

Stride 8 Stride 16

99.20% 98.00%
99.89% -

99.55% -

Original

38.40%
65.64%

48.46%

tifying application’s architectural efficiency - a key ingredient
in quantifying performance portability.

We extended the Roofline methodology to accurately ac-
count for hidden FLOPs associated with non-multiply/add
instructions such as floating-point divide instructions on both
KNL and V100 architectures. When properly accounted, a ker-
nel’s Roofline coordinate shifts (in a potentially architecturally
dependent way) diagonally (increased raw performance and
increased AI). Doing so can shift the kernel away from a band-
width ceiling and towards a compute ceiling. Visualization of
this motion ensures software developers are cognizant of how
close the Roofline they may actually be.

In addition, we addressed one of the persistent questions
associated with Roofline, namely how it accounts for strided
or other memory access patterns. We showed that Roofline
as originally defined, combined with an appropriate approach
for empirically measuring data movement, easily captures
moderate stride memory access and the performance remains
consistent with the Roofline bound on both KNL and V100.

We found that these extensions of Roofline, in conjunction
with empirical benchmarking of machine bandwidths and
FLOPs (using ERT), were essential in using Roofline as the
basis for a discussion of performance portability.

For future work, we may extend the accurate accounting
for divides to other complex floating-point operations such as
exponentials, logarithms, and trigonometric functions. We may
also incorporate the effect of non-floating-point vector pOPs
(compares, shuffles, gathers, stores, integer vector, etc...) as
well as finite instruction issue bandwidth into our empirical
Roofline methodology. Balancing this endeavor’s goal of more
accurately modeling performance must be matched against
the potential for erroneously concluding high architectural
efficiency equates with high performance portability.

As Moore’s law fades, vendors are increasingly motivated
to specialize core and instruction-set architectures in order
to maximize performance. For AVX-512 and V100, this has
produced complex instructions like VNNI and Tensor Cores.
Just as FMA added substantial complexity and required ex-
amination of the resultant dynamic instruction mix in order to
quantify its effect, we expect similar analysis to be required
for these new and future instruction and core types.

Perhaps most valuable is applying this methodology to not
only other computational motifs, but also to full applications.
Ensuring our methodology is both correct on, scalable to, and
still intuitive for full applications ensures the widest possible
audience can reap the benefit and either improve implemen-

tation, develop better balanced architectures, or motivate new
applied mathematics that avoids bottlenecks encountered by
today’s numerical methods on today’s architectures.

V. ACKNOWLEDGEMENT

This material is based upon work supported by the Ad-
vanced Scientific Computing Research Program in the U.S.
Department of Energy, Office of Science, under Award Num-
ber DE-AC02-05CH11231. This research used resources of
the National Energy Research Scientific Computing Center
(NERSC), which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-
ACO02-05CH11231. This research also used resources of the
Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No.
DE-AC05-000R22725.

We would also like to acknowledge the contributions John
Pennycook and Jason Sewall from Intel Corporation made
to this paper, their valuable input on performance portability
and insightful discussions on how Roofline can be effectively
incorporated into the performance portability analysis.

REFERENCES

[1] DOE Office of Science. Available:
performanceportability.org

[2] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, vol. 74, no. 12,
pp- 3202-3216, 2014.

[3] R. Hornung and J. Keasler, “The RAJA portability layer: Overview
and status,” Lawrence Livermore National Laboratory, Livermore, USA,
2014.

[4] J. Larkin, “Performance portability through descriptive parallelism,”
Presentation at DOE Centers of Excellence Performance Portability
Meeting, 2016.

[5] S. J. Pennycook, J. D. Sewall, and V. Lee, “A metric for performance
portability,” arXiv:1611.07409, 2016.

[6] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65-76, 2009.

[7]1 A. Ilic, F. Pratas, and L. Sousa, “Cache-aware Roofline model: Upgrad-
ing the loft,” IEEE Computer Architecture Letters, vol. 13, no. 1, pp.
21-24, 2014.

[8] D. Doerfler, J. Deslippe, S. Williams, L. Oliker, B. Cook, T. Kurth,
M. Lobet, T. Malas, J.-L. Vay, and H. Vincenti, “Applying the Roofline
performance model to the Intel Xeon Phi Knights Landing processor,”
International Conference on High Performance Computing, pp. 339-
353, 2016.

[9] T. Koskela, Z. Matveev, C. Yang, A. Adedoyin, R. Belenov, P. Thierry,

Z. Zhao, R. Gayatri, H. Shan, and L. Oliker, “A novel multi-level

integrated Roofline model approach for performance characterization,”

International Conference on High Performance Computing, pp. 226—

245, 2018.

S. Pennycook, J. Sewall, and V. Lee, “Implications of a metric for

performance portability,” Future Generation Computer Systems, 2017.

H. Dreuning, R. Heirman, and A. L. Varbanescu, “A beginner’s guide

to estimating and improving performance portability,” 3rd International

Workshop on Performance Portable Programming Models for Acceler-

ators (P 3MA) at the International Supercomputing Conference (ISC),

2018.

Intel Knights Landing Processor. [Online]. Available: https://ark.

intel.com/products/94034/Intel- Xeon-Phi-Processor-7230- 16GB- 1 _

30-GHz-64-core

NVIDIA V100 GPU Whitepaper. [Online]. Avail-

able: http://images.nvidia.com/content/volta-architecture/pdf/

volta-architecture- whitepaper.pdf

[Online]. http://

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]
(18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]
[27]
[28]

[29]

Intel Xeon Phi™ Processor: Your path to deeper insight.
[Online]. Available: https://www.intel.com/content/dam/www/public/us/
en/documents/product-briefs/xeon-phi-processor-product-brief.pdf
Empirical Roofline Toolkit. [Online]. Available: https://bitbucket.org/
berkeleylab/cs-roofline-toolkit/src/master/

General Plasmon Pole Kernel. [Online]. Available: https://github.com/
cyanguwa/BerkeleyGW-GPP

BerkeleyGW Code. [Online]. Available: https://berkeleygw.org

J. Soininen, J. Rehr, and E. L. Shirley, “Electron self-energy calculation
using a general multi-pole approximation,” Journal of Physics: Con-
densed Matter, vol. 15, no. 17, p. 2573, 2003.

C. Yang, B. Friesen, T. Kurth, B. Cook, and S. Williams, “Toward
automated application profiling on Cray systems,” Cray User Group
(CUG), 2018.

Intel Software Development Emulator (SDE). [Online]. Available: https:
/[software.intel.com/en-us/articles/intel-software-development-emulator
Calculating ”FLOP” using Intel SDE. [On-
line]. Available: https://software.intel.com/en-us/articles/
calculating-flop-using-intel-software-development-emulator-intel-sde

J. Treibig, G. Hager, and G. Wellein, “LIKWID: A lightweight
performance-oriented tool suite for x86 multicore environments,” 39th
International Conference on Parallel Processing Workshop (ICPPW),
pp. 207-216, 2010.

LIKWID Toolkit. [Online]. Available: https://github.com/RRZE-HPC/
likwid/wiki

NVIDIA Profiler nvprof. [Online]. Available: https://docs.nvidia.com/
cuda/profiler-users-guide/index.html

S. Williams, J. Deslippe, C. Yang, and P. Basu, “Performance tuning
of scientific codes with the Roofline model,” Exascale Computing
Project (ECP) 2nd Annual Meeting, 2018. [Online]. Available:
https://crd.Ibl.gov/assets/Uploads/ECP18-Roofline- 1-intro.pdf

Intel VTune Amplifier Tool. [Online]. Available: https:/software.intel.
com/en-us/vtune

SDE Parsing Script. [Online]. Available: https://bitbucket.org/dwdoerf/
stream-ai-example/src/master/

Intel Intrinsics Guide. [Online]. Available: https://software.intel.com/
sites/landingpage/IntrinsicsGuide/

CUDA C Programming Guide. [Online]. Available: https://docs.nvidia.
com/cuda/cuda-c-programming- guide/index.html

